Lattices in Cryptography #1



L attice

* Discrete subgroup of R"
* Linear combinations with integer
coefficients of vectors in R":
L = {215‘1”(71 + XoUs ++++ + TyUpn @ T1,T2,...,Lm € Z}
* Such a set of vectors generates the

lattice. If it Is linearly independent, it
forms a basis.

* Every lattice has infinitely many bases

(except...)






Lattice problems

e Shortest vector problem (SVP):

Given a basis for a
lattice L, find a shortest nonzero
element in L under a given norm (usually [,).

i 1 e L\{0}, voe L:|d<|7|

* Closest vector problem (CVP):

Given a basis for a _
lattice LCIR” and a target vector ¢ CR~,

—

find the lattice vector closestto ¢ .
@ . WEL,VPeL:|u—-t|<|v-t|



the solution to CVP with this target

a solution to SVP




Complexity of SVP, CVP

/.

Finding a vector that is at most y times
longer than the shortest vector.

* Approximating SVP for the [, norm within
factor y=21» is NP-hard

(with randomized reductions or some assumptioms)

but is unlikely to be NP-hard for y= n1/2,

* Approximating CVP within polylogarithmic
factor y= log‘n ISINP-hard

(for any [, norm).

Finding a vector that is at most y times farther
from the target than the closest vector.

* All known algorithms have exponential
approximation ratios or run in exponential

time.




The LLL lattice reduction algorithm
[Lenstra,Lenstra,Lovasz 1982] -:.

* |nput: a basis for a lattice L of dimension n. %

* QOutput: a reduced basis — ﬁﬂ

a set of short vectors that gene_ra'te L.
* Runs in polynomial time.

 Proven performance: *
The shortest vector in the reduced basis is at
most 22 longer than the shortest nonzero
lattice vector, under the [, norm.

* Experimental performance:
For reasonably small n, and if the gap of the
lattice Is large, almost always finds the
shortest vector.

 Many variants: speedups, tradeoffs.



Solving low-density knapsacks

* Consider the following knapsack problem:
given s,aq,a,,...,a, find z,,x,,...,2, such that
2. T,a,=S.

* Density of the knapsack problem:
d=n/m where m=max{log,a}.

* Random knapsacks with d<0.9408 can be
efficiently reduced to SVP. [Coster, Joux etal., 1991]

* Will show: breaking random knapsacks with
d<1/n by reduction to SVP.

[Lagarias, Odlyzko 1983][Frieze
19876]



Low-density knapsacks — the lattice

w=n2"/?

~way 1 0 0 0
.......................... 0100 g,/ecfofs
-wa N
2 .................................................................................................. yhe/ai[jfg?g
~-wag 0 0 1 0

; 0
-wa, 0 0 0 R 1 )

AlgOrithm: 1. Use LLL to find the shortest vector in L.

2. Rejoice.



For the solution vector:

T
1 ws = 0 0 0 0

. _wal ........... 1 ................ OO ............................ O .......

o | fwe 01 0 - 0
Tq ~wag: 0 0 1 0

SO S T S e O .......

. _wan ........ O ................. OO ................................... 1 .......

=l w0 | x; | T | X4 X,
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Bad vectors, case #1.:

T
Y. ws i 0 ¢ 0 ¢ 0 /LLLfinds a vector that
.................. iS at most 2n/2 timeS
Y1 -wa, 0 10 0 longer than the
.................................................................... By e .
whose length here is N
at most n12, Thus, LLL
will never return this
type of bad vectoys.

Yo
Ys —wa3§ 0 : 0

.....................................................................

% N\
o norms, > w = nv?2"

11



Bad vectors, case #2:

! ; 3 3 A multiple of (z,,...,z,) is

Yo ws . 0 0 OK.
.................. R NN (-0, e e G
| fwe 10 short vector with
W | g g coefficients outside {0,1} <
X 2 ................... ...... that does not Correspond
Ys -was: 0 1 0 to a solution to the
.................. TR SRISN S0 Knapsack.

ERERER R

Y, —wanoooml

*= k| 0 Ty | Ty | 3 | - | 3, | (VK E Zz)




Bad vectors, case #2 (cont.)

Fix a arbitrary nonzero solution vector ¥ = (x1,...,2,) € {0,1}™.

Definition 1. A vector i € Z" is bad for knapsack weights @ = (a1, ..., a,) if:

(1) (0,9) € Lg
(2) [yl < vn2"
(3) Vk € Z: i+ ki

Goal: bound the probabllity that a random
knapsack has any bad vector.
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Bad vectors, case #2 (cont.)

Fix a arbitrary nonzero solution vector & = (z1,...,2z,) € {0,1}".

Definition 1. A vector i € Z" is bad for knapsack weights @ = (a1, ..., a,) if:
(1) (07 ?j) S LEL’

(2) [|g] < vn2"
(3) Vk € Z: §+# ki

Lemma 1. If § is bad for knapsack weights a then there exists yo € Z such that

(4) [yo| < 2vn2m
(5) Zi:l Yia; = Yo Zizl L4 Qg

Proof. Let s =3 " x;a; and let yo = >, yiai/s. By (1), yo € Z. (5) holds since
both sides equal ygs. We have

T T
> wiai <Nl a
=1 =1

(2)
where (x) holds because w.l.o.g., s > 23"  a;. Thus |yo| < 2 ||7]] < vn2. []

|syo| = <

" (*)
=171 " ai < |lijll 2s
=1
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Bad vectors, case #2 (cont.)

Fix a arbitrary nonzero solution vector @ = (z1,...,z,) € {0,1}".

Definition 1. A vector i € Z" is bad for knapsack weights @ = (a1, ..., a,) if:

(1) (0,%) € La
(2) [[9]] < vn2n
(3) Vk € Z: §+ ki

Lemma 1. If y is bad for knapsack weights a then there exists yo € Z such that

(4) |yo| < 2vn2n
(5) D_im1YiGi = Yo ) iy Ti

Lemma 2. For any fixed yo € Z and vy € 7" fulfilling (3), if d is drawn randomly
from {0,....b}" then the probability that y and yo fulfill (5) is at most 1/b.

Proof. Let z; = y; — x;a,. Then (5) is equivalent to > . ; z;a; = 0. By (3), there
exists some nonzero z;. Prz[(5)] = Prz [zmi = — Zi# zia,z} < 1/b by indepen-
dence. ]
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Fix a arbitrary nonzero solution vector & = (z1,...,2,) € {0,1}".

Definition 1. A vector i € Z" is bad for knapsack weights @ = (a1, ..., a,) if:
(1) (0,) € La -
j Corollary. If the knapsack weights a are drawn from
@) 7] < Va2r

{0,..., 2”2} then the probability that there exists a
bad vector for a s negligible.

(3) Vk € Z: §+# ki

Lemma 1. If y is bad for knapsack weights a then there exists yo € Z such that

(4) |yo| < 2vn2n

(5) D i1 YiGi = Yo Dy Tii
Lemma 2. For any fized yo € Z and § € Z™ fulfilling (3), if @ is drawn randomly
from {0,....b}" then the probability that y and yo fulfill (5) is at most 1/0.

Lemma 3. If @ is drawn randomly from {0, ..., b}", the probability that there exists
a bad i for @ is at most 20/2+e()n’ /p,

Proof. There are (4y/n2" + 1) choices of yo that fulfill (4) and at most (2v/n2" + 1)n
choices of ¢ that fulfill (2). Thus:
Pr{dbad g < Pr[3y. 3o : (2)(3)(4)(5)]
< (2\/712” + 1) (4\/77,2” + 1) max {P; [(3)(5)]}

Y,Yo a
N

"~

<1/b by Lemma 2

1IN
(0]




Low-density knapsacks -
conclusion

 Even though the LLL algorithm provides
only an exponential approximation, it
can provably solve most knapsacks with
density d < n/log,2" = 1/n .

* In practice, LLL and variants thereof
perform much better than the proven
bounds, and can be used to solve
knapsacks with much higher density.
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FaCtOring USing |a’[tICGS [Schnorr 1993]

To factorize a composite n with high probability, find
“random” z,y such that z* = y*(modn)

The Morrison-Brillhart recipe: find smooth numbers and
combine their exponent vectors. In this case:
e  Consider the ¢t primes smaller than B.

1. Find 2¢+1 %airs (u;,v;) such that both «, and (u v,n) are B-smooth:

Ui = H pji’j , (ui —wvn) = H pgw
=1
2. Find a subset S such that

1€5 1€5
3. We get two squares over Z. Extract their square roots:

Hui ::192, H(ui—’vm) — yz

€S 1€S
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Factoring using lattices — variant

1. Find only ¢t+1 pairs (u,,v,) such that both «, and u,- v;n are B-smooth:

t
CL/,;,' . bij'
uwi = [[p” . |ui—vin|=]] p;"
2. Find a subset S such that

\V/j : Z (CL«,;j —|— bz',j) =0 (mod 2)
3 Now €S

y_Hpj ies _Hu’l,

1eS
y — Hpj ies’ — H(uz —vn) =y (mod n)
€S
ic (az,j+bi,j)/2 _
x:Hpj S =/y-y (mod n)
J

= z*=y-y=vy° (modn)
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Closest-vector problem for factoring:

T
€1 logp,: 0 0 0 0 §wlog2
€9 0 ilogp,: O 0 0 :wlog3
€3 " 0 0 ‘logp;: O 0 wlogh
€4 0 0 0 :logp, 0 :wlog?
€ 0 0 0 : 0 .. Ilogp, wlogp,

B * * * e * w

~1 0 0 0 0 0 |wlogn




Factoring using lattices (cont.)

 How to find many pairs (u,,v,) such that both «, and
u,- v;n are smooth over the first ¢ primes?

. . . e logp,: 0 : 0 f 0 f .. ! 0 !wlog2
e Find very good CVP solutions in ll . gp ......... SR e s <
. €y 0 tlogp,: 0 : 0 ¢ . ¢ 0 ! wlogld
norm, that is: - M SN S— — S—
|////1]; close to O, ///ll close to to wlogn. |1 [ L
. e €4 0 0 1 0 ilogp: - i 0 wlog?
e Set u = H pjﬂ , V= H pj €j ; ..... |
e;>0 e;<0 1] R S SO S S S
€, 0O : 0 : 0 : 0 : logp, w logp,
e &> |//lll - wlogn T
| g t| _ W
~1 o 0 0 0 0 |wlogn| £
—c/w > | e;logp; —logn l
1=1
U —ovn U —vn
:|Iog(u/vN)|:‘Iog <1 | )|z‘ ‘
vn vn

— |u — vn| < vne/w

 |////]]; is small, so |u-vn| is small = likely to be smooth.

21




Factoring using lattices (cont.)

e (Verify that there are enough short
vectors.)

e Using an efficient algorithm for the CVP
problem in [, with sufficiently good
approximation, we can factor integers.

e With known lattice algorithms:
Impractical.
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