Sieve-based factoring algorithms
From bicycle chains to number fields

Eran Tromer

tronmer @v sdom wei zmann. ac. i |

Weal zmann I nstitute of Science

Factoring by square root extraction

Factoring a composite . can be reduced to computing
sguare roots modulo nn. Given a black box ;

Pick € Z,, randomly and compute x? — — .
With probability at least 1/2,

r’ =vy?, %ty (mod n)

and then ged(x — y, n) is a non-trivial factor of n.

Fermat’s method

2

Special case: n = x? — y?* (difference of squares)

Find x > +/n such that £? — n is a square.

Equivalently (by & = a -+ {\/ﬂ):

f(a) = (a— _\/ﬁ_>2 —n

- N2
gla) = (a — |v/n) «— always a square

Trya = 0,1, 2,... untilyou find a such that f(a)
IS also a square over Z.

Compute x = /g(a), y = +/f(a) over Z.

ldea #1: exploit regularity

for any prime p

f(a)is a f(a) is 0 or a quadratic

—> | residue modulo p:
square over Z p.

(1) € {0,1}

f(a) (mod p) has period p.

About half the values in this period are “good”
(quadratic residues or 0).

We can easily compute these periods.

Lehmer’s bicycle chain sieve [1928]
(implementation of Fermat’s method)

Lehmer’s movie film sieve [1932]
(Implementation of Fermat’s method)

Choose many small primes
and precompute the corre-

sponding periods of (%)

Scana =1,2,3,...
sequentially while keeping
track of the index in each
period.

When all periods are at a
“good” value, stop and
(hopefully) compute

V f(a).

Complexity of Fermat’s method

The efficient sieving hardware is nice, but doesn’t
change the asymptotic performance.

There are only v/ squares smaller than n, so for a
general n we expect to sieve for about /7 steps.

This Is worse than trial division!

ldea #2: Combine relations

[Morrison,Brillhart 1975]
Let f'(a) = a* mod n, g'(a) = a?.
It's too hard to directly find a > 4/n such that f’(a)
IS a square, so instead find a nonempty set S C Z
suchthat |[,.q f'(a) is asquare. Then compute
x, Yy such that

] F(@)=+%*,]]d(a) =2

ac€S acS
Because Va : f'(a) = g’(a) (mod n), we get
r® = y* (mod n)

and gcd(x — y, n) may be a non-trivial factor of n.

ldea #2: Combine relations (example)

f’(629) = 102 = 2 3 17
f/(792) = 33 — 3 11
f’(120) = 1495 = 5 13 23
f’(105) = 84 = 22 3 7
f'(52) = 616 = 2° 7 11
f/(403) = 145 = 5 2
f’(201) = 42 = 2 3 7

. A o

- QUa

’ 4 92 E0 ™2 e);,oOn enfe bec
1] flla) = 2* 32 59 72 11 s arg Use o,

ac{792,52,201} e'/@n,

Dixon’s algorithm [1981]

How to find S suchthat | [, .o f'(a) isasquare?
Consider only the 7r(B) primes smaller than a bound B,

and search for f/(a) values that are B-smooth
(i.e., factor into primes smaller than B).

Pick randoma € {1,...,n} and checkif f'(a) is
B-smooth. If so, represent it as a vector of exponents:

f'(a) = p1* P22 p3® -+ P +— (e1,e2,€3,...,€%)
Find a subset S of these vectors whose sum has even
entries: place the vectors as the rows of a matrix A and

find v such that vA = 0 (mod 2).

Haes f,(a) — D1 P“? p3t - - - pL.“% where e; are all
even, so It’s a square.

Complexity of Dixon’s algorithm

Let p(~y, B) be the probability that a random
number around ~ is B-smooth. Since f’(a) is
distributed randomly in {0, ..., n — 1}, each trial
finds a relation with probability ~ p(n, B).

We need 7 (B) + 1 relations. Thus, we need
roughly 7w(B)/p(n, B) trials.

In each trial we check divisibility by 7w (B) primes.
Tradeoff:

Decrease B — relations are rarer (smaller p).

Increase B — more relations are needed and
they are harder to identify. Also, computing S is
harder since the matrix is larger.

Complexity of Dixon’s algorithm (cont.)

Time complexity for optimal choice of B:

Simple implementation: ¢ = 2
(trial division, Guassian elimination)

Improved implementation: ¢ = \/5
(ECM factorization, Lancos/Wiedemann kernel)

The approach of combining relations works very
well, but we can do better.

The Quadratic Sieve [Pomerance]

Dixon’s method looks at the values f'(a), g’(a) for
random a. f'(a) =a® modn ~n
g'(a) =a”

Instead look at f(a),g(a) fora =0,1,2,...
as in Fermat’s method:

f(a):(a— \/ﬁ)z—n ~ 2a+v/n
g(a) = (a—[van])’

Smaller number are more likely to be smooth!
p(v/n, B) > p(n, B).

The Quadratic Sieve — remember Lehmer

Task: find many a for which f(a) is B-smooth.
We look for a such that p| f(a) for many large p:

Z logp > T = log f(a)
p:p|f(a)

Each prime p “hits” at arithmetic progressions:

{a:p|f(a)} ={a: f(a) =0 (modp)}
= {ri+ kp:k € Z}

where r; are the roots modulo p of the polynomial f
(there are either O or 2; one on average).

AT Guaurgiic Sleve-(eont)

\I/

sieve locations (a values)

Sieve-based factoring — p.15/23

cells

[Shamir 1999]

TWINKLE

\I/

sieve locations (a values)

Sieve-based factoring — p.16/23

r L ORseq slaving

memory

1/

sieve locations (a values)

Sieve-based factoring — p.17/23

Complexity of the Quadatic Sieve

Conjectured time for optimal choice of B:
e(c—l—o(l))-(log n)l/z-(log log n)l/2

with ¢ = 1, compared to ¢ = /2 for Dixon’s
algorithm
—> can factor integers that are twice longer.

Variants — self initializing multiple polynomial
guadratic sieve.

Subexponential time, subexponential space
but can practically factor integers up to ~ 400 bits.

Can we decrease the (log n)'/? term in the
exponent?

Can we?

Key observation: the e’ " Is there essentially
1/2

because we sieve over numbers of size ~ n*/“,
which aren’t very likely to be smooth.

Find a way to sieve over smaller numbers!

But we don’t know how to do that with quadratic
polynomials...

The Number Field Sieve

[Pollard,Lenstra,Lenstra,Manasse,Adleman,Montgomery,...1988—]

As before we have two polynomials f, g that are

related modulo 7, but now the relation is more subtle:

f and g both have a known root 772 modulo n.
f(m)=g(m) =0 (mod n)

Also, suppose f and g are monic and irreducible.

Let o be a complex root of f. Consider the ring Z|«]

(equivalently, Z|x|/(f(x))). The members of this

ring are of the form

g(a) = g+ g + g2a® + - - - ¢ + gaa?es’ 1.

Operations in this ring are done modulo f (), simply

because f(a) = 0.

Similarly define Z[3], where 3 is a complex root of g.

The Number Field Sieve (cont.)

Consider the ring homomorphism ¢ : Z|a| — Zy,
defined by ¢ : o — m (i.e., replacing all occurances
of a with m). Likewise, ¢ : Z|3| —Z, 1 : B — m.

Suppose we found a set of integer pairs S C Z X Z
and also g(«) € Z|a] and t(3) € 7Z[3] such that

q(c)® = .._.(a,b)ES(a’ — ba) over Z[a]
t(B)* = [[(apyes(a —bB) overZ|B] Then modn...

P(q())* = ¢(H(a,b>65(a B ba)) _ _
(8(8))? = ¥ ([anes(a — b8)) = (“’I;IES("

The Number Field Sieve

et F(a,b) = b¥°8/ f(a/b). It turns out that
[[(a.p)es(a — ba) is asquare in Z[]

= |l (a.p)es F'(a, b) is a square in Z

Moreover, the converse “almost” holds.

Therefore, we can work as before: find (a, b) pairs

such that F'(a, b) is B-smooth, compute their
exponent vectors and find dependencies.
To find pairs, we fix values of b and sieve over a.

We do the same for g and Z|3], and find S’ that
satisfies both conditions.

Complexity of the Number Field Sieve

The point: wisely choose f, g so that their values
near O are small and therefore likely to be smooth.

Specifically, we choose f, g of degree

d =~ (logn/loglog n)'/? and the F(a, b) and
G (a, b) values we test for smoothness have size
roughly n.2/¢ (vs. n1/2 for the QS).

Conjectured time for optimal parameter choice:

-(log n)l/?’- (log log n)2/3

e with ¢ = 2.

Successfully factored 512-bit and 524-bit
composites, at considerable effort.

Appears scalable to 1024-bit composites using
custom-built hardware.

	Factoring by square root extraction
	Fermat's method
	Idea #1: exploit regularity
	ptsize {17} Lehmer's bicycle chain sieve {ptsize {14} [1928]} (implementation of Fermat's method)
	Lehmer's movie film sieve{ ptsize {14} [1932]} (implementation of Fermat's method)
	Complexity of Fermat's method
	Idea #2: Combine relations ptsize {14}
ewline [Morrison,Brillhart 1975]
	Idea #2: Combine relations (example)
	Dixon's algorithm ptsize {17}[1981]
	Complexity of Dixon's algorithm
	Complexity of Dixon's algorithm (cont.)
	The Quadratic Sieve ptsize {17}[Pomerance]
	The Quadratic underline {Sieve} -- remember Lehmer
	The Quadatic Sieve -- sieve
	The Quadatic Sieve -- TWINKLE
	The Quadatic Sieve -- PC-based
	Complexity of the Quadatic Sieve
	Can we?
	The Number Field Sieve ptsize {10}[Pollard,Lenstra,Lenstra,Manasse,Adleman,Montgomery,ldots 1988--]
	The Number Field Sieve (cont.)
	The Number Field underline {Sieve}
	Complexity of the Number Field Sieve

