
Sieve-based factoring algorithms
From bicycle chains to number fields

Eran Tromer

tromer@wisdom.weizmann.ac.il

Weizmann Institute of Science

Sieve-based factoring – p.1/25

Factoring by square root extraction

Factoring a composite n can be reduced to computing
square roots modulo n. Given a black box

√
:

Pick x ∈ Zn randomly and compute x2 → √ → y.

With probability at least 1/2,

x2 ≡ y2, x 6≡ ±y (mod n)

and then gcd(x− y, n) is a non-trivial factor of n.

Sieve-based factoring – p.2/25

Fermat’s method
Special case: n = x2 − y2 (difference of squares)

• Find x >
√
n such that x2 − n is a square.

• Equivalently (by x = a+
⌈√
n

⌉

):

f(a) =
(

a−
⌈√
n

⌉)2

− n

g(a) =
(

a−
⌈√
n

⌉)2

← always a square

Try a = 0, 1, 2, . . . until you find a such that f(a)
is also a square over Z.

• Compute x =
√

g(a), y =
√

f(a) over Z.
Sieve-based factoring – p.3/25

Idea #1: exploit regularity

f(a) is a
square over Z

=⇒

for any prime p

f(a) is 0 or a quadratic
residue modulo p:
(

f(a)
p

)

∈ {0, 1}

• f(a) (mod p) has period p.
• About half the values in this period are “good”

(quadratic residues or 0).
• We can easily compute these periods.

Sieve-based factoring – p.4/25

Lehmer’s bicycle chain sieve [1928]

(implementation of Fermat’s method)

Sieve-based factoring – p.5/25

Lehmer’s movie film sieve [1932]

(implementation of Fermat’s method)

Choose many small primes
and precompute the corre-

sponding periods of
(

f(a)
p

)

.

Scan a = 1, 2, 3, . . .
sequentially while keeping
track of the index in each
period.

When all periods are at a
“good” value, stop and
(hopefully) compute
√

f(a).
Sieve-based factoring – p.6/25

Complexity of Fermat’s method

The efficient sieving hardware is nice, but doesn’t
change the asymptotic performance.

There are only
√
n squares smaller than n, so for a

general n we expect to sieve for about
√
n steps.

This is worse than trial division!

Sieve-based factoring – p.7/25

Idea #2: Combine relations
[Morrison,Brillhart 1975]

Let f ′(a) = a2 mod n , g′(a) = a2.
It’s too hard to directly find a >

√
n such that f ′(a)

is a square, so instead find a nonempty set S ⊂ Z

such that
∏

a∈S f
′(a) is a square. Then compute

x, y such that
∏

a∈S
f ′(a) = y2 ,

∏

a∈S
g′(a) = x2

Because ∀a : f ′(a) ≡ g′(a) (mod n), we get

x2 ≡ y2 (mod n)

and gcd(x− y, n) may be a non-trivial factor of n.
Sieve-based factoring – p.8/25

Idea #2: Combine relations (example)

f ′(629) = 102

= 2 3 17

→

f ′(792) = 33

= 3 11

f ′(120) = 1495

= 5 13 23

f ′(105) = 84

= 22 3 7

→

f ′(52) = 616

= 23 7 11

f ′(403) = 145

= 5 29

→

f ′(201) = 42

= 2 3 7

...

∏

a∈{792,52,201}

f ′(a) = 24 32 50 72 112

A square because all

exponents are even.

Sieve-based factoring – p.9/25

Idea #2: Combine relations (example)

f ′(629) = 102 = 2 3 17

→

f ′(792) = 33 = 3 11

f ′(120) = 1495 = 5 13 23

f ′(105) = 84 = 22 3 7

→

f ′(52) = 616 = 23 7 11

f ′(403) = 145 = 5 29

→

f ′(201) = 42 = 2 3 7
...

∏

a∈{792,52,201}

f ′(a) = 24 32 50 72 112

A square because all

exponents are even.

Sieve-based factoring – p.9/25

Idea #2: Combine relations (example)

f ′(629) = 102 = 2 3 17

→ f ′(792) = 33 = 3 11

f ′(120) = 1495 = 5 13 23

f ′(105) = 84 = 22 3 7

→ f ′(52) = 616 = 23 7 11

f ′(403) = 145 = 5 29

→ f ′(201) = 42 = 2 3 7
...

∏

a∈{792,52,201}

f ′(a) = 24 32 50 72 112

A square because all

exponents are even.
Sieve-based factoring – p.9/25

Dixon’s algorithm [1981]

How to find S such that
∏

a∈S f
′(a) is a square?

Consider only the π(B) primes smaller than a boundB,
and search for f ′(a) values that areB-smooth
(i.e., factor into primes smaller thanB).

• Pick random a ∈ {1, . . . , n} and check if f ′(a) is
B-smooth. If so, represent it as a vector of exponents:

f ′(a) = p1
e1 p2

e2 p3
e3 · · · pkek 7→ (e1, e2, e3, . . . , ek)

• Find a subset S of these vectors whose sum has even
entries: place the vectors as the rows of a matrixA and
find v such that vA ≡ ~0 (mod 2).

∏

a∈S f
′(a) = p1

e1 p2
e2 p3

e3 · · · pkek where ei are all
even, so it’s a square.

Sieve-based factoring – p.10/25

Complexity of Dixon’s algorithm
• Let ρ(γ,B) be the probability that a random

number around γ isB-smooth. Since f ′(a) is
distributed randomly in {0, . . . , n− 1}, each trial
finds a relation with probability∼ ρ(n,B).

• We need π(B) + 1 relations. Thus, we need
roughly π(B)/ρ(n,B) trials.

• In each trial we check divisibility by π(B) primes.
• Tradeoff:
• DecreaseB→ relations are rarer (smaller ρ).
• IncreaseB→ more relations are needed and

they are harder to identify. Also, computing S is
harder since the matrix is larger.

Sieve-based factoring – p.11/25

Complexity of Dixon’s algorithm (cont.)
• Time complexity for optimal choice ofB:

e(c+o(1))·(log n)1/2·(log logn)1/2

• Simple implementation: c = 2
(trial division, Guassian elimination)

• Improved implementation: c =
√

2
(ECM factorization, Lancos/Wiedemann kernel)

• The approach of combining relations works very
well, but we can do better.

Sieve-based factoring – p.12/25

The Quadratic Sieve [Pomerance]

Dixon’s method looks at the values f ′(a), g′(a) for
random a. f ′(a) =a2 mod n ∼ n

g′(a) =a2

Instead look at f(a), g(a) for a = 0, 1, 2, . . .
as in Fermat’s method:

f(a) =
(

a−
⌈√
n

⌉)2

− n ∼ 2a
√
n

g(a) =
(

a−
⌈√
n

⌉)2

Smaller number are more likely to be smooth!

ρ(
√
n,B)� ρ(n,B).

Sieve-based factoring – p.13/25

The Quadratic Sieve – remember Lehmer
• Task: find many a for which f(a) isB-smooth.
• We look for a such that p|f(a) for many large p:

∑

p : p|f(a)

log p > T ≈ log f(a)

• Each prime p “hits” at arithmetic progressions:

{a : p|f(a)} = {a : f(a) ≡ 0 (modp)}
=

⋃

i{ri + kp : k ∈ Z}

where ri are the roots modulo p of the polynomial f
(there are either 0 or 2; one on average).

Sieve-based factoring – p.14/25

The Quadatic Sieve – sieve

Sieve-based factoring – p.15/25

The Quadatic Sieve – TWINKLE

Sieve-based factoring – p.16/25

The Quadatic Sieve – PC-based

Sieve-based factoring – p.17/25

Complexity of the Quadatic Sieve
• Conjectured time for optimal choice ofB:

e(c+o(1))·(logn)1/2·(log logn)1/2

with c = 1, compared to c =
√

2 for Dixon’s
algorithm
⇒ can factor integers that are twice longer.

• Variants — self initializing multiple polynomial
quadratic sieve.

• Subexponential time, subexponential space
but can practically factor integers up to∼ 400 bits.

• Can we decrease the (logn)1/2 term in the
exponent?

Sieve-based factoring – p.18/25

Can we?

Key observation: the e···(logn)1/2··· is there essentially
because we sieve over numbers of size∼ n1/2,
which aren’t very likely to be smooth.

Find a way to sieve over smaller numbers!

But we don’t know how to do that with quadratic
polynomials...

Sieve-based factoring – p.19/25

The Number Field Sieve
[Pollard,Lenstra,Lenstra,Manasse,Adleman,Montgomery,. . . 1988–]

As before we have two polynomials f, g that are
related modulo n, but now the relation is more subtle:
f and g both have a known root m modulo n.

f(m) ≡ g(m) ≡ 0 (mod n)

Also, suppose f and g are monic and irreducible.
Let α be a complex root of f . Consider the ring Z[α]
(equivalently, Z[x]/(f(x))). The members of this
ring are of the form
q(α) = q0 + q1α+ q2α

2 + · · · q + qdα
degf−1.

Operations in this ring are done modulo f(α), simply
because f(α) = 0.

Similarly define Z[β], where β is a complex root of g.
Sieve-based factoring – p.20/25

The Number Field Sieve (cont.)

Consider the ring homomorphism φ : Z[α]→ Zn

defined by φ : α 7→ m (i.e., replacing all occurances
of α withm). Likewise, ψ : Z[β]→Z, ψ : β 7→ m.

Suppose we found a set of integer pairs S ⊂ Z× Z

and also q(α) ∈ Z[α] and t(β) ∈ Z[β] such that

q(α)2 =
∏

(a,b)∈S(a− bα) over Z[α]

t(β)2 =
∏

(a,b)∈S(a− bβ) over Z[β] Then modn...

φ(q(α))2 ≡ φ
(

∏

(a,b)∈S(a− bα)
)

ψ(t(β))2 ≡ ψ
(

∏

(a,b)∈S(a− bβ)
)

}

≡
∏

(a,b)∈S
(a−bm)

Sieve-based factoring – p.21/25

The Number Field Sieve
∏

(a,b)∈S(a− bα) = q(α)2 over Z[α]

?!

Let

F (a, b) = bdegff(a/b). It

turns out that
∏

(a,b)∈S(a− bα) is a square in Z[α]

=⇒
∏

(a,b)∈S F (a, b) is a square in Z

Moreover, the converse

“almost” holds.

Therefore, we can work as

before: find (a, b) pairs such

that F (a, b) isB-smooth,

compute their exponent vectors

and find dependencies.

To find pairs, we fix values of b

and sieve over a.

We do the same for g and

Z[β], and find S that satisfies

both conditions.

Sieve-based factoring – p.22/25

The Number Field Sieve

Let F (a, b) = bdegff(a/b). It turns out that
∏

(a,b)∈S(a− bα) is a square in Z[α]

=⇒
∏

(a,b)∈S F (a, b) is a square in Z

Moreover, the converse “almost” holds.

Therefore, we can work as before: find (a, b) pairs
such that F (a, b) isB-smooth, compute their
exponent vectors and find dependencies.
To find pairs, we fix values of b and sieve over a.

We do the same for g and Z[β], and find S that
satisfies both conditions.

Sieve-based factoring – p.22/25

Complexity of the Number Field Sieve
• The point: wisely choose f, g so that their values

near 0 are small and therefore likely to be smooth.
• Specifically, we choose f, g of degree
d ≈ (logn/ log logn)1/3 and the F (a, b) and
G(a, b) values we test for smoothness have size

roughly n2/d (vs. n1/2 for the QS).
• Conjectured time for optimal parameter choice:

e(c+o(1))·(logn)1/3·(log logn)2/3 with c ≈ 2.
• Successfully factored 512-bit and 524-bit

composites, at considerable effort.
• Appears scalable to 1024-bit composites using

custom-built hardware.
Sieve-based factoring – p.23/25

.

Sieve-based factoring – p.24/25

Probability of smoothness

Let ρ(γ, β) be the probability that a random number

around γ is β-smooth. Asymptotically:

γ = ec1(logn)d1·(log logn)1−d1

β = ec2(logn)d2·(log logn)1−d2







→

ρ(γ, β) =

e(−c1(d1−d2)/c2+o(1))·(logn)d1−d2·(log logn)1−(d1−d2)

Sieve-based factoring – p.25/25

	Factoring by square root extraction
	Fermat's method
	Idea #1: exploit regularity
	ptsize {17} Lehmer's bicycle chain sieve {ptsize {14} [1928]} (implementation of Fermat's method)
	Lehmer's movie film sieve{ ptsize {14} [1932]} (implementation of Fermat's method)
	Complexity of Fermat's method
	Idea #2: Combine relations ptsize {14}
ewline [Morrison,Brillhart 1975]
	Idea #2: Combine relations (example)
	Dixon's algorithm ptsize {17}[1981]
	Complexity of Dixon's algorithm
	Complexity of Dixon's algorithm (cont.)
	The Quadratic Sieve ptsize {17}[Pomerance]
	The Quadratic underline {Sieve} -- remember Lehmer
	The Quadatic Sieve -- sieve
	The Quadatic Sieve -- TWINKLE
	The Quadatic Sieve -- PC-based
	Complexity of the Quadatic Sieve
	Can we?
	The Number Field Sieve ptsize {10}[Pollard,Lenstra,Lenstra,Manasse,Adleman,Montgomery,ldots 1988--]
	The Number Field Sieve (cont.)
	The Number Field underline {Sieve}
	Complexity of the Number Field Sieve
	.
	Probability of smoothness

